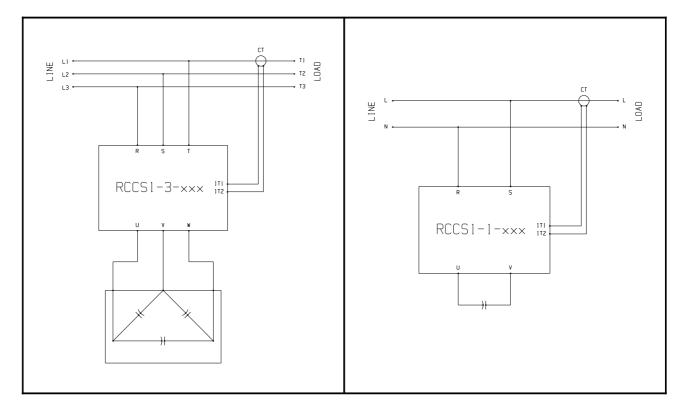

Single (RCCS1) and Triple (RCCS3) Reactive Current Controlled Switch

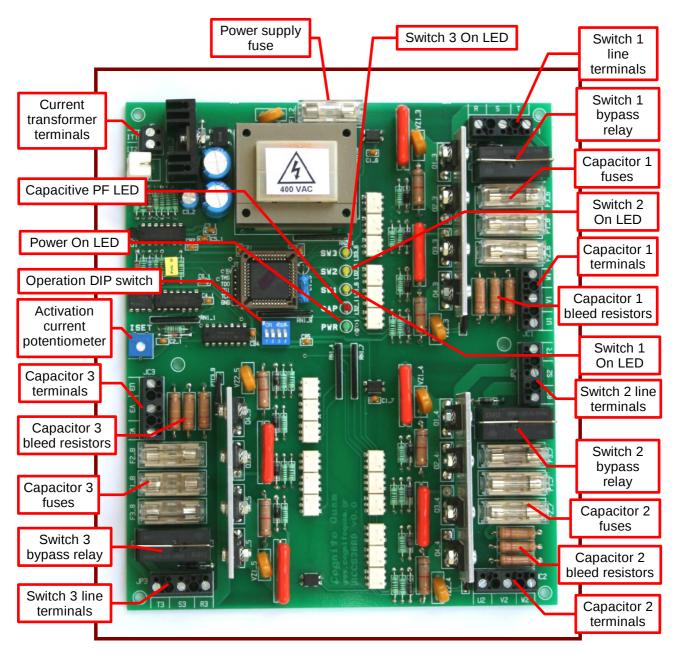
The new (v1.1) RCCSx switches measure the reactive current in single- and three-phase line systems and activate one (RCCS1) or three (RCCS3) 8 A solid state switches to connect compensating capacitors in and out of the line system. The current is detected with a current transformer (CT) in one of the lines and the sampling period is selectable from 4 to 32 seconds.

The RCCSx response makes it particularly suitable for fast dynamic power factor (PF) compensation of frequently-started, low-duty or variable loads such as lifts, conveyors, compressors, pumps and fans.


The RCCS1 v1.1 single switch

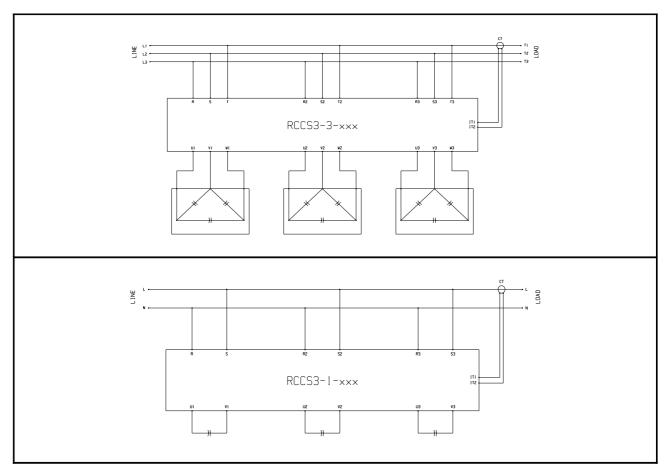
Each switch is activated when the detected reactive current is above the respective set value as determined at the activation potentiometer. Switch activation/deactivation happens at every sampling instant as set at the DIP switch.

The RCCSx is a fully protected, digitally-controlled unit, simple to install and adaptable to all power factor capacitor compensation applications. The only other parts required to build a complete power factor correction system are the current transformer and the compensating capacitor(s).


Industrial Electronics, Control, Robotics and Automation

RCCSx Feature Summary					
Line connection	No neutral connection for the three-phase models.				
Current detection	By standard 5 A secondary current transformer (CT).				
Reactive current	Activation potentiometer range of 0.3 - 3 Ar (measured at the current				
activation range	transformer secondary) ensures versatile and scalable operation.				
Phase sensitive	Reactive current is measured by phase sensitive detection rejecting noise and				
detection method	line harmonic effects.				
Overheat protected	Solid state relay circuits switch each 8 A compensating capacitor in and out of				
solid state relay	the line at every sampling instant.				
Zero crossing type	The capacitor is switched in when the line voltage equals the capacitor voltage				
solid state relay	thus eliminating capacitor inrush current and extending service life.				
Bypass relay	Bypass relay across each solid state switch minimizes switch losses.				
Sampling time	DIP switch selectable of 4, 8, 16 and 32 seconds.				
Forced state	DIP switch selectable state turns each switch on or off regardless of current				
	input enabling individual power circuit testing or orderly system disconnection.				
Indicating LEDs	LEDs show the power supply state, each switch activation/overheat status and				
	the capacitive PF condition (or a reverse connected current transformer).				
Bleed resistors	Capacitor bleed resistors ensure charge-free capacitors after shut-down.				
Isolated control	Control circuit is galvanically isolated enhancing safety and noise immunity.				
circuit					
Protection	Against line overvoltages, faults and power circuit overheating.				

Typical three-phase (left) and single-phase (right) power factor compensation RCCS1 systems.


Industrial Electronics, Control, Robotics and Automation

The RCCS3 v1.1 triple switch

During normal operation each "Switch ON" LED indicates the on or off condition of the relevant switch. In the event of its power circuit overheating, the switch is deactivated and the "Switch ON" LED flashes until power is removed. Overheating is usually the result of switch bypass relay failure and in such a case the worn relay is easily removed from its socket and replaced.

Industrial Electronics, Control, Robotics and Automation

Typical three-phase (top) and single-phase (bottom) power factor correction RCCS3 systems.

Ordering Information by Line System							
Description	120 V, 60 Hz lines	230 V, 50 Hz lines	240 V, 60 Hz lines	400 V, 50 Hz lines	480 V, 60 Hz lines		
Single-phase RCCS1 single reactive current controlled switch	RCCS1-1- 120	RCCS1-1- 230	RCCS1-1- 240				
Three-phase RCCS1 single reactive current controlled switch	RCCS1-3- 120		RCCS1-3- 240	RCCS1-3- 400	RCCS1-3- 480		
Single-phase RCCS3 triple reactive current controlled switch	RCCS3-1- 120	RCCS3-1- 230	RCCS3-1- 240				
Three-phase RCCS3 triple reactive current controlled switch	RCCS3-3- 120		RCCS3-3- 240	RCCS3-3- 400	RCCS3-3- 480		

	Supplied by	