Industrial Electronics, Control, Robotics and Automation

SSR_ICCD Solid State Relay (SSR) Integral Cycle Control Drive

The SSR_ICCD accepts a 0–5 VDC, PWM or potentiometer signal to drive the target SSR with complete (integral) line half-cycles minimizing supply and load line disturbances and noise. SSR_ICCD operation is enabled by two dedicated inputs, one interfacing to general function enabling dry contacts and the other to a thermal cut-out device. The enabling logic type (positive or negative) and the averaging period during which the on/off integral cycle sequence is proportional to the analog input signal are set at the board DIP switch.

The SSR_ICCD board

The SSR_ICCD is designed for standard single- and three- phase line systems. The characterizing features are as follows:

SSR_ICCD Feature Summary		
Power supply	230 VAC power supply is protected against line noise and disturbances.	
Temperature switch	Normally closed temperature switch is internally wired to cut-out board AC power.	
input	The switch can be used in sensing SSR or load overheating conditions.	
Enable input logic	Set at the DIP switch ensuring versatile external control (positive, ON-for-ON or	
	negative, ON-for-OFF).	
SSR drive output	Current limited SSR drive handles SSR input problems.	
Analog input	Analog/potentiometer input is protected against reverse polarity connection,	
protection	shorts and out-of-range potentials.	
Output	DIP switch selectable averaging/accumulating time of 25 and 50 line cycles	
accumulation time	offers 2% and 1% output power resolution respectively.	
SSR drive integral	Output ON/OFF half-cycle sequence is proportional to the analog input and	
cycle	synchronized to AC power supply zero-crossings.	
Low voltage	Low voltage detecting circuit keeps SSR drive off during power-downs and	
detection	brown-outs.	
LEDs	Indicating LEDs show system state.	
Isolated I/O circuits	Isolated control and analog circuits enhance safety and noise immunity.	

Industrial Electronics, Control, Robotics and Automation

While powered and enabled, the SSR_ICCD reads the analog input and ouputs a sequence of ON half-cycles which are synchronized to its AC supply. The number of ON half-cycles in the accumulating sequence and, as a result, the power conducted by the SSR to the load is proportional to the analog input.

Typical potentiometer controlled SSR_ICCD system. The unit is powered by 230 VAC and enabled by the normally-closed temperature switch and the enable dry contacts. The SSR is driven with a line synchronized ON/OFF integral cycle sequence which is proportional to the potentiometer setting. The V+ connection is not used in the case of an analog 0-5 VDC signal controlling the unit.

Ordering information		
Model	Description	
SSR_ICCD	Solid State Relay Integral Cycle Control Drive	

Supplied by	